skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Yuchen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cavity-modified chemistry uses strong light-matter interactions to modify the electronic properties of molecules in order to enable new physical phenomena such as novel reaction pathways. As cavity chemistry often involves critical regions where configurations become nearly degenerate, the ability to treat multireference problems is crucial to understanding polaritonic systems. In this Letter, we show through the use of a unitary ansatz derived from the anti-Hermitian contracted Schrödinger equation that cavity-modified systems with strong correlation, such as the deformation of rectangular H4coupled to a cavity mode, can be solved efficiently and accurately on a quantum device. In contrast, while our quantum algorithm can be made formally exact, classical-computing methods as well as other quantum-computing algorithms often yield answers that are both quantitatively and qualitatively incorrect. Additionally, we demonstrate the current feasibility of the algorithm on near intermediate-scale quantum hardware by computing the dissociation curve of H2strongly coupled to a bosonic bath. 
    more » « less
  2. Free, publicly-accessible full text available February 11, 2026
  3. Pyroelectric materials that can generate electric charges when subjected to temperature changes are of interest for renewable energy. However, current flexible pyroelectric energy harvesters suffer from low output. Here, we present a nanocomposite of liquid crystalline elastomer (LCE) and pyroelectric lead zirconate titanate (PZT) nanoparticles and demonstrate a flexible heat harvesting device with high output. The overall pyroelectricity is enhanced by the secondary pyroelectricity generated from the thermal stress imposed on the LCE. Calculations and simulations corroborate with experiments, suggesting that the monodomain LCE/PZT with fixed boundaries offers the most enhancement. At a maximum heating rate of 0.20 kelvin per second, the fixed monodomain film (42.7 weight % PZT) shows an output current of 2.81 nanoamperes and a voltage of 6.23 volts, corresponding to a pyroelectric coefficientpof −4.01 nanocoulombs per square centimeter per kelvin, 49% higher than that of the widely used polyvinylidene fluoride. Our energy harvester can charge capacitors and power electronic devices such as light-emitting diodes. 
    more » « less
    Free, publicly-accessible full text available February 14, 2026
  4. In this work, we have implemented the time-dependent density functional theory approximate auxiliary s function (TDDFT-aas) method, which is an approximate TDDFT method. Instead of calculating the exact two-center electron integrals in the K coupling matrix when solving the Casida equation, we approximate the integrals, thereby reducing the computational cost. In contrast to the related TDDFT plus tight-binding (TDDFT+TB) method, a new type of gamma function is used in the coupling matrix that does not depend on the tight-binding parameters. The calculated absorption spectra of silver and gold nanoparticles using TDDFT-aas show good agreement with TDDFT and TDDFT+TB results. In addition, we have implemented the analytical excited-state gradients for the TDDFT-aas method, which makes it possible to calculate the emission energy of molecular systems. 
    more » « less
  5. We explore the simulation of conical intersections (CIs) on quantum devices, setting the groundwork for potential applications in nonadiabatic quantum dynamics within molecular systems. 
    more » « less
  6. Free, publicly-accessible full text available June 1, 2026
  7. Abstract Mechanical characterization of dynamic DNA nanodevices is essential to facilitate their use in applications like molecular diagnostics, force sensing, and nanorobotics that rely on device reconfiguration and interactions with other materials. A common approach to evaluate the mechanical properties of dynamic DNA nanodevices is by quantifying conformational distributions, where the magnitude of fluctuations correlates to the stiffness. This is generally carried out through manual measurement from experimental images, which is a tedious process and a critical bottleneck in the characterization pipeline. While many tools support the analysis of static molecular structures, there is a need for tools to facilitate the rapid characterization of dynamic DNA devices that undergo large conformational fluctuations. Here, we develop a data processing pipeline based on Deep Neural Networks (DNNs) to address this problem. The YOLOv5 and Resnet50 network architecture were used for the two key subtasks: particle detection and pose (i.e. conformation) estimation. We demonstrate effective network performance (F1 score 0.85 in particle detection) and good agreement with experimental distributions with limited user input and small training sets (~ 5 to 10 images). We also demonstrate this pipeline can be applied to multiple nanodevices, providing a robust approach for the rapid characterization of dynamic DNA devices. 
    more » « less